Inertia and moments

In static equilibrium, relationship between end-effector force $F$ and Joint torque $\tau$: \(\tau = J^TF\)

Physics prequisite

force to torque: \(\tau = r \times F = rF\sin\theta\)

friction torque(viscous): \(\tau = -k\dot{\theta}\)

弹性力(k 为弹簧的劲度系数,x 为振子偏离平衡位置的位移): \(F = -kx\) 阻尼力(c 为阻尼系数,v 为振子速度): \(F = -cv\)

Linear Motion & Rotational Motion

Common Moments of Inertia

Q: For arbitrary angular accelaration vector, its linear combination of rotations along axis:

A: \(\tau = \begin{bmatrix} \tau_x \\ \tau_y \\ \tau_z \\ \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{1}{4}mr^2 +\frac{1}{12}mh^2 & 0 & 0\\ 0 & \frac{1}{4}mr^2 +\frac{1}{12}mh^2 & 0 \\ 0 & 0 & \frac{1}{2}mr^2 \\ \end{bmatrix}}_{\text{Inertia Tensor}} \begin{bmatrix} \ddot{\theta_x} \\ \ddot{\theta_y} \\ \ddot{\theta_z} \\ \end{bmatrix} = I\dot{\omega}\) Diagonal terms called moments of inertia. Off diagonals called prodcts of inertia, which are all ZEROs when coordinate frame is aligned with principle axes.

Map from joint space to task space

torque: \(\tau = J^TF \rightarrow F^TJJ^TF=1\) velocity: \(\dot{q} = J^+\dot{x} \rightarrow \dot{x}^T(JJ^T)^{-1}\dot{x}=1\) The principle axes of 2 ellipsoids have same directions but inverse magnitude.

Lagrangian

Define Lagrangian: \(L = \underbrace{KE}_{\text{kinematic energy}} - \underbrace{PE}_{\text{potential energy}}\) KE should include both linear and angular.

Lagrange equation: \(\frac{d}{dt} (\frac{\partial{L}}{\partial{\dot{\theta}}}) -\frac{\partial{L}}{\partial{\theta}} = F_{ext} = \sum\tau\)

Inverse dynamics

(Equations of motion) When forces do not cancel out and the equations of how robot will accelarate at given time.

In general, Inverse dynamics equation for rigid body manipulators: \(\underbrace{M(q)}_{\text{Inertia Matrix}}\ddot{q}+ \underbrace{B(q)}_{\text{Coriolis M惯性}}[\dot{q}\dot{q}]+\underbrace{C(q)}_{\text{Centrifugal M离心}}[\dot{q}^2]+\underbrace{G}_{\text{Gravity Vector}}(q) = \underbrace{\tau}_\text{external forces}\) where \(\text{Joint velocities: } [\dot{q}\dot{q}]=[\dot{q_1}\dot{q_2}, \dot{q_1}\dot{q_3}, ..., \dot{q_{n-1}}\dot{q_n} ]^T\) \([\dot{q}^2] = [\dot{q}_1^2,\dot{q}_2^2,...,\dot{q}_n^2]^T\) M,B,C,G all configuration dependent (on $\theta$ not $\dot{\theta},\ddot{\theta}$)

Inertia Matrix M MUST be symmetric, positive definite, invertible: \(\underbrace{\begin{bmatrix} \frac{\partial\tau_1}{\partial\ddot{\theta_1}} & \frac{\partial\tau_1}{\partial\ddot{\theta_2}} & ... & \frac{\partial\tau_1}{\partial\ddot{\theta_n}} \\\\ \frac{\partial\tau_2}{\partial\ddot{\theta_1}} & \frac{\partial\tau_2}{\partial\ddot{\theta_2}} & ... & \frac{\partial\tau_2}{\partial\ddot{\theta_n}} \\...\\ \frac{\partial\tau_n}{\partial\ddot{\theta_1}} & \frac{\partial\tau_n}{\partial\ddot{\theta_2}} & ... & \frac{\partial\tau_n}{\partial\ddot{\theta_n}} \end{bmatrix}}_{M} \underbrace{\begin{bmatrix} \ddot{\theta_1} \\\\ \ddot{\theta_2} \\...\\ \ddot{\theta_n} \end{bmatrix}}_{\ddot{q}}\)

Centrifugal Matrix: \(\underbrace{\begin{bmatrix} \frac{\partial\tau_1}{\partial\dot{\theta_1}^2} & \frac{\partial\tau_1}{\partial\dot{\theta_2}^2} & ... & \frac{\partial\tau_1}{\partial\dot{\theta_n}^2} \\\\ \frac{\partial\tau_2}{\partial\dot{\theta_1}^2} & \frac{\partial\tau_2}{\partial\dot{\theta_2}^2} & ... & \frac{\partial\tau_2}{\partial\dot{\theta_n}^2} \\...\\ \frac{\partial\tau_n}{\partial\dot{\theta_1}^2} & \frac{\partial\tau_n}{\partial\dot{\theta_2}^2} & ... & \frac{\partial\tau_n}{\partial\dot{\theta_n}^2} \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} \dot{\theta_1}^2 \\\\ \dot{\theta_2}^2 \\...\\ \dot{\theta_n}^2 \end{bmatrix}}_{[\dot{q}^2]}\)

Coriolis Matrix: \(\underbrace{\begin{bmatrix} \frac{\partial\tau_1}{\partial\dot{\theta_1}\dot{\theta_2}} \\...\\ \frac{\partial\tau_n}{\partial\dot{\theta_1}\dot{\theta_2}} \end{bmatrix}}_{B} \underbrace{\begin{bmatrix} \dot{\theta_1}\dot{\theta_2} \end{bmatrix}}_{[\dot{q}\dot{q}]}\)

Gravity Vector: \(\underbrace{\begin{bmatrix} \tau_1 - M_1-C_1-B_1 \\...\\ \tau_n - M_n-C_n-B_n \end{bmatrix}}_{G}\)

Forward dynamics

Because M is invertible, Forward dynamics equation can be:

\[\ddot{q} = M(q)^{-1}(-C(q,\dot{q})-G(q)+\tau)\]

Forward Dynamics useful for simulation & prediction. Inverse Dynamics useful for control.